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LETTER TO THE EDITOR 

Comparison of ground state properties for odd half-integer 
and integer spin antiferromagnetic Heisenberg chains 

M Kolb, R Botet and R Jullien 
Laboratoire de Physique des Solidest, BBt 510, Universiti de  Paris-Sud, Centre d’Orsay, 
91405 Orsay, France 

Received 26 August 1983 

Abstract. Ground state properties of finite anisotropic antiferromagnetic Heisenberg chains 
are studied for odd half-integer spins S = 4. i .  . . as well as integer spins S = 1,  2 . , . . Finite 
size scaling analysis of the results clearly distinguishes the half-integer ( S  = $, $) from the 
integer ( S  = 1) spin situation. It gives strong support to a recent conjecture which postulates 
that the T=O phase structure is very different in the two cases. According to this idea 
there exists a new phase between the planar and the antiferromagnetic region, for integer 
spins only. This phase, which includes the isotropic point, has a finite energy gap and no  
long range order. 

The Heisenberg chain has been studied extensively, being one of a few non-trivial and 
still soluble quantum models. The ground state properties have been determined 
exactly for the spin S = $ case with various anisotropies (Bethe 1938, Yang and Yang 
1966, Baxter 1972). For S >  $ the model has not been solved. Large S developments 
indicate that spin wave theory describes the T = 0 properties quite well down to s = 
(Steiner et a1 1976). 

Recently, the interest in such systems has increased as experimentally a number 
of quasi one-dimensional Heisenberg antiferromagnets have been studied (Kjeins and 
Steiner 1978, Heilmann et a1 1978). This has motivated theoretical efforts to extend 
the known S =$ results. Attempts have been made to understand the continuum of 
low-lying excitations better (Faddeev and Takhtajan 1981, Hashimoto 1982) and to 
solve models with S > $. A class of Heisenberg systems with more complicated interac- 
tions has been solved by Bethe ansatz for any value of S (Sutherland 1975, Takhtajan 
1982). But the simple Heisenberg model has resisted an exact solution for S > 4. 
Estimates of ground state and thermodynamic properties for S > 1 have been obtained 
by numerical methods applied to finite chains (Blote 1975). 

A major change in view has been pioneered by Haldane (1982, 1983a, b) on the 
basis of a treatment in terms of quantum action-angle variables. He contends that the 
T = 0 properties for even half-integer spins differ fundamentally from odd half-integer 
spins. This result has stimulated numerical work by two of the present authors (Botet 
and Jullien 1983) for S = 1. The ground state and spectral properties are consistent 
with the findings by Haldane. 

Here, we study spin values from S = 4 to S = 3 and critically compare the even and 
odd half-integer spins. The conclusions are that S = $, are very different from S = 1, 
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while for S > 2 the results show some qualitative, but little quantitative distinction, in 
agreement with Haldane's proposal. The phase structure for integer spin has been 
criticised by Bonner and Muller (1983). They claim that the transitions at A # 1 
contradict general principles of critical phenomena. We believe that two separate 
transitions are compatible with these ideas. However, symmetry requires that if they 
coincide, it must be at A = 1 (figure 1). The essential singularity then masks the other. 

1 X Y  (: ,,,/.'aF 1 X Y  ,:/ S ,  ~ , L F  I '  ' I ,  , > I '  , /  I , / /  ,o/ 
0 1 h 0 kc ,  1 hCZ h 

Figure 1. T = 0 phase structure of anisotropic antiferromagnetic Heisenberg chain. The 
energy spectrum is sketched as a function of the anisotropy A. XY, S ,  AF stand for planar, 
singlet. NCel doublet phases. (a) Odd half-integer spin, ( b )  integer spin. Shaded regions 
indicate a continuum. 

Consider the Hamiltonian 
N 

HN = ( S ; - , S ;  +Sy-_ ,Sy  +AS;-,Sf) 
1 = 1  

where S ; ,  S y ,  Sf are spin S operators at the N sites of a periodic chain ( S o =  S N ) .  
We vary the anisotropy A from O <  A < 1 (planar) over A = 1 (isotropic) to A > 1 
(antiferromagnetic), For S = 1 the exact results distinguish between a gapless region 
(XY phase) with a spin wave spectrum, power-law correlation functions and no long 
range order and an antiferromagnetic region (AF phase) with a NCel doublet separated 
by a gap from the excited states and exponential correlations. The transition from 
XY to AF occurs at the isotropic point, A = 1, and has an essential singularity. Haldane 
postulates that this behaviour is characteristic for spins S = 4, 5 .  . . , figure l(a).  For 
integer spins S = 1, 2 (figure l ( b ) )  there exists a new phase ( S  phase) intermediate 
between the XY and the AF regions which has a singlet ground state, a non-zero 
energy gap and exponential correlation functions. The transition XY-S at 0 < A,, < 1 
has an essential singularity. The other transition S-AF at A C 2 >  1 is of the singlet to 
doublet type. The isotropic Heisenberg chain A = 1 lies in the S phase. As S + CO the 
difference between integer and odd half-integer spins must disappear. Still according 
to Haldane, this happens very rapidly with increasing S such that already for the 
modest values under study this ought to be apparent. Indeed, for S = 2 the properties 
differ hardly from half-integer values. 

Our approach is complementary to the one by Haldane in the sense that his 
conclusions are exact when S + CO while we work with arbitrary S but finite N. We 
proceed according to the by now standard method of extrapolating numerically obtained 
finite N results to N = CO. Finite size scaling and the related phenomenological renor- 
malisation group (PRG) have proven to be useful (Fisher and Barber 1972, Nightingale 
1976, Sneddon 1978). The quantities calculated are several energy gaps g(N,  S )  = 
E, - Eo between low-lying excited states and the ground state. Ground state correlation 
functions and energy derivatives can also be used to analyse the T = 0 behaviour (Kolb 
ef a1 1983). 

The Hamiltonian HN has been diagonalised numerically to obtain all low-lying 
eigenvalues and eigenvectors. To increase the maximum N the symmetries of HN 



Letter to the Editor L675 

have been exploited. They are conservation of total spin along an axis (Z'= 
-N. S,  . , . , N -  S ) ,  spin inversion (F= *l) ,  left/right symmetry of the chain (R = 5 1 )  
and conservation of the wavevector ( q  = (27r /N)n) .  With reasonable efforts and using 
the Lanczos method (Whitehead 1980) designed to diagonalise sparsely populated 
matrices, the largest chains for S = i ,  1 ,  5, 2, $, 3 are N = 2 0 ,  12, 10, 8, 6, 6. Only 
even N are considered, odd N would have to be analysed separately (Blote 1975). 
As for S = $ exact results are available it merely serves to test the convergence as N + 00. 

There is a qualitative distinction between odd half-integer and integer spins. While 
C' = O  for the ground state and Zz = 0 (*1) for A > 1 ( A  < 1) for the lowest excitation 
independent of S and N, the quantum numbers ( F , R , q )  for ground state/lowest 
excitation are ( 1 ,  1 ,  O ) ( - 1 ,  -1 ,  T )  for integer S and all N but alternate between 
(1 ,1 ,0) / ( -1 ,  -1 ,  7r) and ( -1 ,  -1 ,  ~ ) / ( l ,  1 , O )  for S odd half integer and 1N even 
respectively odd. The gaps between ground state and lowest excitation as a function 
of N and S are shown in figure 2 for A = 1 where the distinction between the even 
and odd half-integer case should be clearest. For N = 2, 4 the gap is independent of 
S. In figure 2 ( a ) ,  the scaled gap grows much more rapidly for S = 1 than for S = $, $. 
Figure 2( b)  illustrates how with increasing N the gap deviates from the spin independent 
behaviour of N = 2, 4 and-for S half integer only-extrapolates to zero. For S > 2 
the gap deviates so little from the small N (or S + 00) form that larger N would have 
to be considered to estimate the asymptotic limit. 

0 1 2 3 0 0.1 0.2 
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Figure 2. Energy gaps as a function of spin S and number of sites N for the isotropic 
Heisenberg model ( A  = 1 ) .  ( a )  Scaled gap Ng(N, S )  against S with N as parameter. ( b )  
Gap g ( N ,  S )  against 1 / N .  The labelsindicate the spin S. The broken line is the extrapolation 
of the gaps for N = 2 , 4  (independent of S). Note that for S = f, 4 the gap turns downward, 
while for S = 1 it has an upward trend. 

Higher excited states describe the T = 0 properties in general less accurately than 
the first excitation. Nonetheless, they can give useful information. In the integer spin 
situation, the second gap at the transition A,, (figure l ( b ) )  necessarily has a sharp 
minimum. A very direct way to determine Ac2 then is to analyse the minimum of this 
gap. Figure 3 shows Amin (N, S )  where the first gap in the subspace of the ground 
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Figure 3. Anisotropy A,,, where the gap g2(A) assumes its minimum against I,” for 
spins S =  1, 2, Z(ag,(A)/aA/,,,,=O). g, is the gap between the ground state and the first 
excited state in the same subspace (for S = 4, g,(A) is practically flat). There are oscillations 
between N / 2  even (0) and N / 2  odd (x) .  

state has its minimum. For S = 1 the estimate of A,, is at 1.145 for N = 12 and rising, 
for S = 2 it tends exactly to 1 from above. For S = $, gz(A) is practically constant. 

A powerful method to determine a transition is by means of the PRG. Applying it 
to A,,, it gives convincing evidence that half-integer and integer spins are qualitatively 
different. Defining A ’  ( A ,  N) through (N+ l)g(A, N+ 1) = (N-  l)g(A’,  N-  1) we pre- 
sent in figure 4 the estimates A,= A ’  (A,) for successive values of N. The question of 
how the results converge as N+co has been considered by Kolb et a1 (1982). The 
transition for S = 4,; decreases slowly towards A, = 1 whereas for S = 1, A,, has a strong 
upward trend excluding A, = 1 as a limiting value. The difference in slope and curvature 
qualitatively distinguish the points in contradiction to Bonner and Muller (1983). For 
S 2 2 larger values of N are necessary to distinguish the two types of behaviour. 
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Figure 4. Phenomenological renormalisation analysis for AC2 ( N +  1, N -  1 )  against 1/N 
for spins S = 4, 1, 2. 2. 
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The other transition A,, (figure l ( b ) )  can be investigated by PRG as well. As one 
expects a line of fixed points A * ,  O < A * < A , , ,  A,(N) provides lower bound for Acl .  
For all S the scaled gaps superimpose in this region. 

In conclusion, the comparison of even and odd half-integer spins on finite chains 
reveals a new phase structure for integer spins. It is most pronounced for the gaps 
near the isotropic ( A  = 1) model when contrasting S = 1, $ with S = 1. For S 3 2 ,  the 
distinction even/odd is extremely small. The data presented corroborate Haldane’s 
picture. It may be interesting to study the thermodynamic consequences of the new 
phase. While for S a  2 ,  the effects are probably too small, for S = 1 the estimated size 
of the gap at A = 1 is large enough to be observable. 

We thank D Haldane and P Pfeuty for stimulating discussions. MK acknowledges 
support by the Fonds National Suisse. 
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